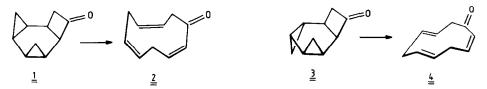
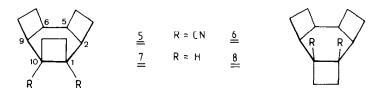
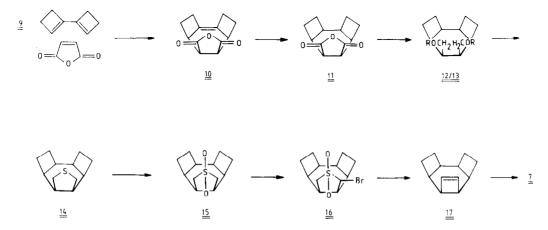

CIS-TRIS-[2.2.2]-G-HOMOBENZENE - SYNTHESIS AND THERMOLYSIS

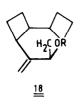

M. Maas, M. Lutterbeck, D. Hunkler and H. Prinzbach ^{*} Chemisches Laboratorium der Universität, 7800 Freiburg i. Br., BRD

The <u>cis-tris-[2.2.2]-\sigma-homobenzene 7</u> has been synthesised. From vapour phase thermolyses (400-500°C) it is concluded, that the $[\sigma^2_s + \sigma^2_s + \sigma^2_s]$ -cycloreversion reaction is - at most - only a minor pathway in the thermal stabilisation of <u>7</u>.


The <u>cis-tris-[1.1.1]-\sigma-homobenzenes A</u> (in contrast to the <u>trans-isomers</u>) have very favourable stereoelectronic prerequisites for thermal $[{}_{\sigma}^{2+}{}_{\sigma}^{2+}{}_{\sigma}^{2}]$ cycloreversion $(\underline{A} \rightarrow \underline{B} \rightarrow \underline{C})^{(1)}$. The resulting difference in kinetic stability between <u>cis-/trans-pairs A/D</u> is an important mechanistic criterium ²⁾. With

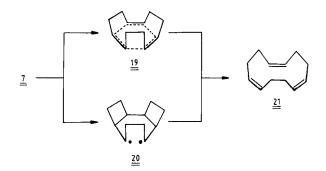
increasing size of the pericyclic transition states this kinetic differentiation should become less pronounced 3,4 - as indicated by the behaviour of the <u>cis</u>-/<u>trans</u>-ketones <u>1</u>/<u>3</u> (dis,dis,dis to Z,Z,Z-<u>2</u> and dis,con,con to Z,E,E-<u>4</u>) ⁵⁾. For the experimental verification of the hypothesis, that for 12-mem-

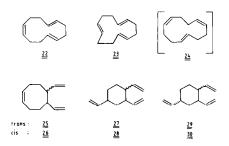

bered transition states the relative stability of $\underline{cis} - \underline{trans} - \underline{tris} - [2.2.2] - \sigma$ homobenzenes could even be reversed, problems were expected: With three fourmembered rings participating early⁶⁾ trishomobenzenoid stabilisation (e.g. <u>19</u>) is supposedly weak and hampered by steric compressions. With increasing


activation energies for the concerted cycloreversions homolytic processes

will become competitive. In this regard the parent hydrocarbons $\frac{7}{2}$ are better models than the dicyano-derivatives $\frac{5}{6}$.

The route devised for the synthesis of $\underline{7}$ ($\underline{8}$)⁸) was patterned on the published procedure for $\underline{5}/\underline{6}$. The <u>trans</u>-compound, however, is not accessible by this route, since bicyclobutenyl $\underline{9}^{9}$ adds maleic anhydride exclusively in the <u>endo</u>-fashion to afford the 1:1-adduct $\underline{10}^{7}$ (with improved yield of 60%) as well as decomposition products of $\underline{9}$. Reduction to give $\underline{11}$ (Pd/C (10%), diethyl ether, 20°C, 95%), to $\underline{12}$ (R=H, LAH/tetrahydrofuran, 75%, m.p. 59-60°C) and esterification (CH₂Cl₂/triethylamine/mesyl chloride) to the bismesylate $\underline{13}$ (80%, m.p. 60-61°C) are straightforward. In the reaction of $\underline{13}$ with Na₂S


(boiling ethanol) besides $\underline{14}$ (57%, b.p. 60° C/10⁻²Torr) minor side products are formed, one of which is $\underline{18}$ (5%). Bromination of the sulphone $\underline{15}$ (96%,


m.p. $65-66^{\circ}$ C) according to <u>Corey-Block</u> ¹⁰⁾ (<u>n</u>-BuLi, -78°C, BrCN) gives the oily and highly unstable <u>16</u> (76%), which without detailed characterisation is transformed into <u>17</u> (potassium <u>t</u>-butylate, boiling THF, 29%, purified by chromatography). The low yield in the Ramberg-Bäcklund-step <u>16</u> \rightarrow <u>17</u> probably reflects the steric compression in the product. After hydrogenation (Pd/C) the

 $\frac{\text{cis-tris-}[2.2.2]-\sigma-\text{homobenzene }\underline{7} ((1\alpha, 2\alpha, 5\alpha, 6\alpha, 9\alpha, 10\alpha)-\text{tetracyclo}[8.2.0.0^{2,5}, 0^{6,9}] \text{dodecane}) \text{ is isolated (v.p.c., Carbowax, 120°C, 100%) as a colourless oil The ¹³C NMR spectrum (C₆D₆) consists of two signals (<math>\delta$ = 31.9, J_{C,H}= 136 Hz, tert.C, δ =24.4, J_{C,H}=133 Hz, sec.C). The ¹H NMR spectrum (CDCl₃) showing broad singlets (δ = 2.43) for the six cyclohexane protons and two multiplets for the methylene protons (δ = 2.04 (exo), 1.92 (endo)) is temperature invariant down to -70°C. Presumably the high torsional strain in $\underline{7}$ with all rings planar is minimised - as shown for $\underline{5}/\underline{6}$ by X-ray analysis ⁷ - by chair-like distortion of the six-membered ring and by twisting the three four-membered rings - fast processes even at - 70°C (C_{3w}-symmetry).

For the $[{}_{\sigma}2+{}_{\sigma}2+{}_{\sigma}2]$ -cycloreversion $\underline{7} \rightarrow \underline{19} \rightarrow \underline{21}$ a ΔH^{\pm} -value of 50-52 kcal/ mole, indicative of isomerisation temperatures between 450-500°C, was estimated based on additive increments and neglecting H/H-interactions. In view of the instability of the cyclododeca-1,5,9-triene $\underline{21}$ (and its isomers $\underline{22}-\underline{24}$) in this temperature range as published by <u>Rienäcker</u> and <u>Balcioglu</u>¹¹⁾, analytical complications had to be expected. Under the previously described vapour phase pyrolysis conditions $\underline{7}$ is transformed to a minor extent at 400°C, to 35% at 420°C, to 54% at 450°C and to 89% at 500°C. According to careful GC/ MS-(10% CM 20) and ¹H-NMR-monitoring (250 MHz) the thermolysates (Tab.) are mainly composed of highly volatile, unidentified fragments. In addition the

cyclododecatrienes $\underline{21} - \underline{23}$, the trivinylcyclohexanes $\underline{27} - \underline{30}$ and at high conversion the divinylcyclooctenes $\underline{25}/\underline{26}$ have been identified.

Tab. Composition (%) of the Thermolysates of $\underline{7}$

	<u>Z</u>	<u>21</u>	22	23	<u>25</u>	26	<u>2</u> <u>7</u> − <u>3</u> <u>0</u>	fragments
420°C	65	2	1	1	_	-	3	30
450 [°] C 500 [°] C	46	2	2	2	1	1	5	40
500°C	11	1	2	2	1	1	1 2	70

It was ascertained from the literature ¹¹⁾ and by control experiments with the trienes $2\underline{1}-\underline{24}$ that the C₁₂H₁₈ - products $2\underline{2}-\underline{30}$ (at least to a great extent) arise from the Z,Z,Z-triene $2\underline{1}$. Since the fragments do not stem from

 $\underline{21}$ (or $\underline{22}-\underline{24}$), the percentage of Z,Z,Z- $\underline{21}$ is at best 15-20%. Obviously, for the <u>cis-tris-[2.2.2]-\sigma-homobenzene 7</u> (as for 5) the $3\sigma \rightarrow 3\pi$ -isomerisation is no longer the favoured stabilisation pathway. For that reason, the question concerning the formation of $\underline{21}$ - concerted via the trishomobenzenoid transition state $\underline{19}$ with cooperative scission of the three cyclobutane C-C-bonds, stepwise via e.g. the diradical $\underline{20}$, - looses much of its significance. It should be noted, that within the same temperature range the trioxide A undergoes the $[\sigma^2 + \sigma^2 + \sigma^2]$ -cycloreversion quantitatively.

Financial support by the "<u>Deutsche Forschungsgemeinschaft</u>" and the "<u>Fonds der Chemischen Industrie</u>" is gratefully acknowledged. We thank <u>Prof. Dr. R. Rien-äcker</u> for a generous gift of the $C_{12}H_{18}$ -compounds <u>21-30</u>.

- 1) <u>C. Rücker</u>, <u>G. McMullen</u>, <u>C. Krüger</u> and <u>H. Prinzbach</u>, Chem. Ber. <u>115</u>, 2287 (1982); cit. lit.
- <u>H. Prinzbach</u>, "Homobenzenoid Transition States in σ-π-Isomerisation Reac tions" ISNA III, San Francisco, 1977, cit. lit.
- 3) <u>H.Prinzbach</u>, <u>H.-P. Schal</u> and <u>D. Hunkler</u>, Tetrahedron Lett. <u>1978</u>, 2195; cf
 H. Prinzbach, M. Maas, H. Fritz and G.McMullen, ibid. 1980, 4897.
- 4) <u>C. McMullen</u>, <u>G. Sedelmeier</u>, <u>R. Hildebrand</u>, <u>H. Fritz</u> and <u>H. Prinzbach</u>, Tet rahedron Lett. 1979, 3847.
- 5) <u>H. Prinzbach</u>, <u>H.-P. Schal</u>, <u>D. Hunkler</u> and <u>H. Fritz</u>, Angew. Chem., Internat. Ed. Engl. 19, 567 (1980).
- 6) J. Spanget-Larsen and <u>R. Gleiter</u>, Angew. Chem., Internat. Ed. Engl. <u>17</u>, 441 (1978).
- 7) G. McMullen, M. Lutterbeck, H. Fritz, H. Prinzbach and C. Krüger, Israel. J. Chem., <u>22</u>, 19 (1982).
- 8) <u>M. Maas</u>, Ph.D. Thesis, Univ. Freiburg 1982; the new compounds are characterised by elemental analysis and spectra (IR, ¹H-, ¹³C-NMR, MS).
- 9) F. Heinrich and W. Lüttke, Liebigs Ann. Chem. 1978, 1880.
- 10) E.J. Corcy and E. Block, J. Org. Chem. 34, 1233 (1969).
- 11) R. Rienäcker and N. Balcioglu, Liebigs Ann. Chem. 1975, 650.

(Received in Germany 22 February 1983)